Self-sustained enzymatic cascade for the production of 2,5-furandicarboxylic acid from 5-methoxymethylfurfural
نویسندگان
چکیده
Background 2,5-Furandicarboxylic acid is a renewable building block for the production of polyfurandicarboxylates, which are biodegradable polyesters expected to substitute their classical counterparts derived from fossil resources. It may be produced from bio-based 5-hydroxymethylfurfural or 5-methoxymethylfurfural, both obtained by the acidic dehydration of biomass-derived fructose. 5-Methoxymethylfurfural, which is produced in the presence of methanol, generates less by-products and exhibits better storage stability than 5-hydroxymethylfurfural being, therefore, the industrial substrate of choice. Results In this work, an enzymatic cascade involving three fungal oxidoreductases has been developed for the production of 2,5-furandicarboxylic acid from 5-methoxymethylfurfural. Aryl-alcohol oxidase and unspecific peroxygenase act on 5-methoxymethylfurfural and its partially oxidized derivatives yielding 2,5-furandicarboxylic acid, as well as methanol as a by-product. Methanol oxidase takes advantage of the methanol released for in situ producing H2O2 that, along with that produced by aryl-alcohol oxidase, fuels the peroxygenase reactions. In this way, the enzymatic cascade proceeds independently, with the only input of atmospheric O2, to attain a 70% conversion of initial 5-methoxymethylfurfural. The addition of some exogenous methanol to the reaction further improves the yield to attain an almost complete conversion of 5-methoxymethylfurfural into 2,5-furandicarboxylic acid. Conclusions The synergistic action of aryl-alcohol oxidase and unspecific peroxygenase in the presence of 5-methoxymethylfurfural and O2 is sufficient for the production of 2,5-furandicarboxylic acid. The addition of methanol oxidase to the enzymatic cascade increases the 2,5-furandicarboxylic acid yields by oxidizing a reaction by-product to fuel the peroxygenase reactions.
منابع مشابه
Enzymatic Preparation of 2,5-Furandicarboxylic Acid (FDCA)—A Substitute of Terephthalic Acid—By the Joined Action of Three Fungal Enzymes
Enzymatic oxidation of 5-hydroxymethylfurfural (HMF) and its oxidized derivatives was studied using three fungal enzymes: wild-type aryl alcohol oxidase (AAO) from three fungal species, wild-type peroxygenase from Agrocybe aegerita (AaeUPO), and recombinant galactose oxidase (GAO). The effect of pH on different reaction steps was evaluated and apparent kinetic data (Michaelis-Menten constants, ...
متن کاملEnzymatic synthesis of 2,5-furandicarboxylic acid-based semi-aromatic polyamides: enzymatic polymerization kinetics, effect of diamine chain length and thermal properties
Department of Polymer Chemistry, Zern University of Groningen, Nijenborgh 4, E-mail: [email protected]; Tel: +31-50 363 68 Dutch Polymer Institute (DPI), P.O. Box 90 † Electronic supplementary information ( crude PA8F from the enzymatic kinetics st crude PA8F determined by SEC, molec the puried FDCA-based semi-aromatic obtained FDCA-based semi-aromatic pol DSC curves of the obtained FDCA-based 1...
متن کاملCreating a more robust 5-hydroxymethylfurfural oxidase by combining computational predictions with a novel effective library design
Background HMF oxidase (HMFO) from Methylovorus sp. is a recently characterized flavoprotein oxidase. HMFO is a remarkable enzyme as it is able to oxidize 5-hydroxymethylfurfural (HMF) into 2,5-furandicarboxylic acid (FDCA): a catalytic cascade of three oxidation steps. Because HMF can be formed from fructose or other sugars and FDCA is a polymer building block, this enzyme has gained interest ...
متن کامل5-hydroxymethylfurfural conversion by fungal aryl-alcohol oxidase and unspecific peroxygenase.
Oxidative conversion of 5-hydroxymethylfurfural (HMF) is of biotechnological interest for the production of renewable (lignocellulose-based) platform chemicals, such as 2,5-furandicarboxylic acid (FDCA). To the best of our knowledge, the ability of fungal aryl-alcohol oxidase (AAO) to oxidize HMF is reported here for the first time, resulting in almost complete conversion into 2,5-formylfuranca...
متن کاملToward biomass-derived renewable plastics: Production of 2,5-furandicarboxylic acid from fructose
We report a process for converting fructose, at a high concentration (15 weight %), to 2,5-furandicarboxylic acid (FDCA), a monomer used in the production of polyethylene furanoate, a renewable plastic. In our process, fructose is dehydrated to hydroxymethylfurfural (HMF) at high yields (70%) using a γ-valerolactone (GVL)/H2O solvent system. HMF is subsequently oxidized to FDCA over a Pt/C cata...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 11 شماره
صفحات -
تاریخ انتشار 2018